194 research outputs found

    Calibration and High Fidelity Measurement of a Quantum Photonic Chip

    Full text link
    Integrated quantum photonic circuits are becoming increasingly complex. Accurate calibration of device parameters and detailed characterization of the prepared quantum states are critically important for future progress. Here we report on an effective experimental calibration method based on Bayesian updating and Markov chain Monte Carlo integration. We use this calibration technique to characterize a two qubit chip and extract the reflectivities of its directional couplers. An average quantum state tomography fidelity of 93.79+/-1.05% against the four Bell states is achieved. Furthermore, comparing the measured density matrices against a model using the non-ideal device parameters derived from the calibration we achieve an average fidelity of 97.57+/-0.96%. This pinpoints non-ideality of chip parameters as a major factor in the decrease of Bell state fidelity. We also perform quantum state tomography for Bell states while continuously varying photon distinguishability and find excellent agreement with theory

    Population, sexual and reproductive health, rights and sustainable development: forging a common agenda.

    No full text
    This article suggests that sexual and reproductive health and rights activists seeking to influence the post-2015 international development paradigm must work with sustainable development advocates concerned with a range of issues, including climate change, environmental issues, and food and water security, and that a way of building bridges with these communities is to demonstrate how sexual and reproductive health and rights are relevant for these issues. An understanding of population dynamics, including urbanization and migration, as well as population growth, can help to clarify these links. This article therefore suggests that whether or not sexual and reproductive health and rights activists can overcome resistance to discussing "population", become more knowledgeable about other sustainable development issues, and work with others in those fields to advance the global sustainable development agenda are crucial questions for the coming months. The article also contends that it is possible to care about population dynamics (including ageing and problems faced by countries with a high proportion of young people) and care about human rights at the same time. It expresses concern that, if sexual and reproductive health and rights advocates do not participate in the population dynamics discourse, the field will be left free for those for whom respecting and protecting rights may be less of a priority

    Reconfigurable controlled two-qubit operation on a quantum photonic chip

    Get PDF
    Integrated quantum photonics is an appealing platform for quantum information processing, quantum communication and quantum metrology. In all these applications it is necessary not only to be able to create and detect Fock states of light but also to program the photonic circuits that implements some desired logical operation. Here we demonstrate a reconfigurable controlled two-qubit operation on a chip using a multiwaveguide interferometer with a tunable phase shifter. We find excellent agreement between theory and experiment, with a 0.98 \pm 0.02 average similarity between measured and ideal operations

    Witnessing eigenstates for quantum simulation of Hamiltonian spectra

    Get PDF
    The efficient calculation of Hamiltonian spectra, a problem often intractable on classical machines, can find application in many fields, from physics to chemistry. Here, we introduce the concept of an "eigenstate witness" and through it provide a new quantum approach which combines variational methods and phase estimation to approximate eigenvalues for both ground and excited states. This protocol is experimentally verified on a programmable silicon quantum photonic chip, a mass-manufacturable platform, which embeds entangled state generation, arbitrary controlled-unitary operations, and projective measurements. Both ground and excited states are experimentally found with fidelities >99%, and their eigenvalues are estimated with 32-bits of precision. We also investigate and discuss the scalability of the approach and study its performance through numerical simulations of more complex Hamiltonians. This result shows promising progress towards quantum chemistry on quantum computers.Comment: 9 pages, 4 figures, plus Supplementary Material [New version with minor typos corrected.

    'I make up a silly name': Understanding Children's Perception of Privacy Risks Online

    Get PDF
    Children under 11 are often regarded as too young to comprehend the implications of online privacy. Perhaps as a result, little research has focused on younger kids' risk recognition and coping. Such knowledge is, however, critical for designing efficient safeguarding mechanisms for this age group. Through 12 focus group studies with 29 children aged 6-10 from UK schools, we examined how children described privacy risks related to their use of tablet computers and what information was used by them to identify threats. We found that children could identify and articulate certain privacy risks well, such as information oversharing or revealing real identities online; however, they had less awareness with respect to other risks, such as online tracking or game promotions. Our findings offer promising directions for supporting children's awareness of cyber risks and the ability to protect themselves online

    Data assurance in opaque computations

    Get PDF
    The chess endgame is increasingly being seen through the lens of, and therefore effectively defined by, a data ‘model’ of itself. It is vital that such models are clearly faithful to the reality they purport to represent. This paper examines that issue and systems engineering responses to it, using the chess endgame as the exemplar scenario. A structured survey has been carried out of the intrinsic challenges and complexity of creating endgame data by reviewing the past pattern of errors during work in progress, surfacing in publications and occurring after the data was generated. Specific measures are proposed to counter observed classes of error-risk, including a preliminary survey of techniques for using state-of-the-art verification tools to generate EGTs that are correct by construction. The approach may be applied generically beyond the game domain

    Calculating Unknown Eigenvalues with a Quantum Algorithm

    Full text link
    Quantum algorithms are able to solve particular problems exponentially faster than conventional algorithms, when implemented on a quantum computer. However, all demonstrations to date have required already knowing the answer to construct the algorithm. We have implemented the complete quantum phase estimation algorithm for a single qubit unitary in which the answer is calculated by the algorithm. We use a new approach to implementing the controlled-unitary operations that lie at the heart of the majority of quantum algorithms that is more efficient and does not require the eigenvalues of the unitary to be known. These results point the way to efficient quantum simulations and quantum metrology applications in the near term, and to factoring large numbers in the longer term. This approach is architecture independent and thus can be used in other physical implementations

    Testing foundations of quantum mechanics with photons

    Full text link
    The foundational ideas of quantum mechanics continue to give rise to counterintuitive theories and physical effects that are in conflict with a classical description of Nature. Experiments with light at the single photon level have historically been at the forefront of tests of fundamental quantum theory and new developments in photonics engineering continue to enable new experiments. Here we review recent photonic experiments to test two foundational themes in quantum mechanics: wave-particle duality, central to recent complementarity and delayed-choice experiments; and Bell nonlocality where recent theoretical and technological advances have allowed all controversial loopholes to be separately addressed in different photonics experiments.Comment: 10 pages, 5 figures, published as a Nature Physics Insight review articl

    Quantum teleportation on a photonic chip

    Full text link
    Quantum teleportation is a fundamental concept in quantum physics which now finds important applications at the heart of quantum technology including quantum relays, quantum repeaters and linear optics quantum computing (LOQC). Photonic implementations have largely focussed on achieving long distance teleportation due to its suitability for decoherence-free communication. Teleportation also plays a vital role in the scalability of photonic quantum computing, for which large linear optical networks will likely require an integrated architecture. Here we report the first demonstration of quantum teleportation in which all key parts - entanglement preparation, Bell-state analysis and quantum state tomography - are performed on a reconfigurable integrated photonic chip. We also show that a novel element-wise characterisation method is critical to mitigate component errors, a key technique which will become increasingly important as integrated circuits reach higher complexities necessary for quantum enhanced operation.Comment: Originally submitted version - refer to online journal for accepted manuscript; Nature Photonics (2014
    corecore